‘Tiresome ticks: Ecology and transmission of tick-borne disease in Australia’

Administering Organisation: Murdoch University

Investigators:

1 Prof Peter Irwin
Chief Investigator
Murdoch University
Murdoch University

2 Prof Una Ryan
Chief Investigator
Murdoch University
Murdoch University

3 Dr Charlotte Oskam
Murdoch University
Murdoch University

4 Dr Liisa Ahlstrom
Partner Investigator
Bayer Australia Ltd
Bayer Australia Ltd

5 A/Prof Peter Banks
Chief Investigator
The University of Sydney
The University of Sydney

6 Prof Roy Hall
Chief Investigator
The University of Queensland
The University of Queensland

7 Dr Sonja Hall-Mendelin
Partner Investigator
Queensland Health Forensic And Scientific Services
Queensland Health

8 Dr Bettina Schunack
Partner Investigator
Bayer Animal Health GmbH
Bayer HealthCare

Proposal Summary

Growing numbers of Australians are diagnosed with a Lyme disease-like illness, presumed to be tick-borne, yet a conclusive diagnosis remains elusive because of uncertainty about its causative agent(s). Building on data from our previous research, we will (1) determine the bacterial, protozoal and viral biodiversity in wildlife ticks and their native mammal hosts, and (2) provide new information about the biology and transmission dynamics of these microorganisms, and their potential to cause disease in wildlife, domesticated animals and humans. This research will lead to improved diagnostic tests and management protocols for tick-borne disease in Australia.
‘Backyard Bandicoots: engaging community in urban bushland conservation’

Administering Organisation: Murdoch University

Investigators:
1 A/Prof Patricia Fleming Chief Investigator Murdoch University
2 Prof Giles Hardy Chief Investigator Murdoch University
3 Dr Catherine Baudains Chief Investigator Murdoch University
4 Miss Jenna Bishop Partner Investigator City of Mandurah

Proposal Summary

This study contributes an important international model for urban ecosystem function and restoration. Digging mammal species turn over substantial volumes of soil as they dig to forage on invertebrates, subterranean fungi, and plant material. These ecosystem engineers contribute to water infiltration, nutrient cycling, increased soil microorganism function, and seedling recruitment. They spread hypogeous mycorrhizal fungi that contribute to plant nutrition, a crucial role in Australia’s nutrient-poor soils. Working with the Mandurah City community, we will identify resources used by urban bandicoots (quenda), enhance bushland reserves through targeted plantings, and identify and mitigate threats to their persistence in cities.
‘Wicked problems: optimising fire management for a resilient future’

Administering Organisation: Murdoch University

Investigators:

1. **Prof Neal Enright**
 - Chief Investigator
 - Murdoch University

2. **Dr Joseph Fontaine**
 - Chief Investigator
 - Murdoch University

3. **Dr Ben Miller**
 - Partner Investigator
 - Botanic Gardens & Parks Authority

Proposal Summary

Fire risk management is a conundrum for agencies responsible both for protection of life and property and biodiversity conservation. Global change factors (rainfall decline, warming, invasive species, ecosystem fragmentation) interact with changes in fire regime (interval and season) associated with prescribed burning to affect the regeneration capacity of native species. We will quantify these interactions to reveal the complex vulnerabilities of native ecosystems to managed fire and derive clear management guidelines that simultaneously optimise risk minimisation and ecosystem resilience in the face of global change. We will also test the validity of modern best-practice in predicting the sensitivity of plant communities to managed fire.
‘Fume resistant explosives for critical areas’

Administering Organisation: Murdoch University

Investigators:

1. Prof Bogdan Dlugogorski
 - Chief Investigator
 - Murdoch University

2. Dr Jeffrey Gore
 - Partner Investigator
 - Dyno Nobel Asia Pacific Pty Ltd

3. Dr Mohammednoor Altarawneh
 - Chief Investigator
 - Murdoch University

Proposal Summary

Dyno Nobel Asia Pacific has recently developed a new formulation of ammonium nitrate (AN) emulsion explosive that provides excellent resistance against emissions of NOx fumes. This project aims to understand how the explosive works and expand its application to critical areas. We will investigate physical and chemical parameters of the key emulsion components and will formulate new blends for higher-strength applications. The research will characterise the surface burning process of AN prills and other materials to gain insights into possible NOx production and mitigation pathways. The results from the project will overcome the limitations of the new technology, enhancing the competitiveness of this Australian company.