Is an archaeal phosphoglucoisomerase required for catabolism in *Ensifer medicae*?

INTRODUCTION:
- The genome of *Ensifer medicae* WSM419 has been established (http://www.ncbi.nlm.nih.gov/pubmed/21304680)
- The metabolic pathways are available on KEGG (http://www.genome.jp/kegg/pathway.html)
- The KEGG pathway reveals 2 genes (Smed_0109 & the archaeal type Smed_2463) that encode for phosphoglucoisomerase (PGI) in *Ensifer medicae* WSM419
- A mutation in the locus tag Smed_0109 permits growth of the Smed_0109 mutant on the gluconeogenic substrate succinate suggesting that Smed_2463 could indeed encode an alternative PGI

HYPOTHESIS:
Smed_2463 can suppress a succinate defective phenotype that would be expected from a mutation in Smed_0109 and therefore Smed_0109 & Smed_2463 both encode PGI enzymes (a mutation in Smed_2463 and a double mutation in Smed_0109/Smed_2463 would be used to test this)

PROJECT OUTLINE:
In this project, you will investigate the role of Smed_2463 by:
1) Creating a single knockout mutation in Smed_2463 and a double knockout mutation (in Smed_2463 and Smed_0109)
2) Characterise the phenotype of constructed mutants
3) Performing complementation studies to restore a wild-type phenotype to constructed mutants

TECHNIQUES YOU WILL LEARN
- cloning, gene inactivation and verification, PCR, gel electrophoresis, protein assays, general microbiology.

For more information, please contact Wayne Reeve (W.Reeve@murdoch.edu.au)
Jason Terpolilli (J.Terpolilli@murdoch.edu.au)